Let E_1 and E_2 be two ellipses whose centers are at the origin. The major axes of E_1 and E_2 lie along the x-axis and the y-axis, respectively. Let S be the circle $x^2 + (y-1)^2 = 2$. The straight line x + y = 3 touches the curves S, E_1 and E_2 at P, Q

and R respectively. Suppose that PQ = PR = $\frac{2\sqrt{2}}{3}$. If e_1 and

 e_2 are the eccentricities of E_1 and E_2 , respectively, then the correct expression(s) is (are) (JEE Adv. 2015)

(a)
$$e_1^2 + e_2^2 = \frac{43}{40}$$

(b)
$$e_1 e_2 = \frac{\sqrt{7}}{2\sqrt{10}}$$

(c)
$$\left| e_1^2 - e_2^2 \right| = \frac{5}{8}$$

(d)
$$e_1 e_2 = \frac{\sqrt{3}}{4}$$

Solution: -

Let E₁:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 where $a > b$

and E₂:
$$\frac{x^2}{c^2} + \frac{y^2}{d^2} = 1$$
 where $c < d$

Also S:
$$x^2 + (y-1)^2 = 2$$

Tangent at $P(x_1, y_1)$ to S is x + y = 3

To find point of contact put x = 3 - y in S. We get P(1, 2) Writing eqⁿ of tangent in parametric form

$$\frac{x-1}{\frac{-1}{\sqrt{2}}} = \frac{y-2}{\frac{1}{\sqrt{2}}} = \pm \frac{2\sqrt{2}}{3}$$

$$x = \frac{-2}{3} + 1$$
 or $\frac{2}{3} + 1$ and $y = \frac{2}{3} + 2$ or $\frac{-2}{3} + 2$

$$\Rightarrow$$
 $x = \frac{1}{3}$ or $\frac{5}{3}$ and $y = \frac{8}{3}$ or $\frac{4}{3}$

$$\therefore Q\left(\frac{5}{3}, \frac{4}{3}\right) \text{ and } R\left(\frac{1}{3}, \frac{8}{3}\right)$$

eqn of tangent to E1 at Q is

$$\frac{5x}{3a^2} + \frac{4y}{3b^2} = 1$$
 which is identical to $\frac{x}{3} + \frac{y}{3} = 1$

$$\Rightarrow$$
 $a^2 = 5$ and $b^2 = 4 \Rightarrow e_1^2 = 1 - \frac{4}{5} = \frac{1}{5}$

eqⁿ of tangent to E_2 at R is

$$\frac{x}{3c^2} + \frac{8y}{3d^2} = 1$$
 identical to $\frac{x}{3} + \frac{y}{3} = 1$

$$\Rightarrow$$
 $c^2 = 1$, $d^2 = 8 \Rightarrow e_2^2 = 1 - \frac{1}{8} = \frac{7}{8}$

$$\therefore e_1^2 + e_2^2 = \frac{43}{40}, e_1 e_2 = \frac{\sqrt{7}}{2\sqrt{10}}, \left| e_1^2 - e_2^2 \right| = \frac{27}{40}$$